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The effective tensile failure stress of an
uncracked brittle structure: failure at a blunt
stress concentration

E. SMITH
Manchester University — University of Manchester Institute of Science and Technology,
Materials Science Centre, Grosvenor Street, Manchester M1 7HS, UK

The paper proceeds from the basis that the dominant source of the geometry dependence of

the effective tensile failure stress of an uncracked brittle structure is deterministic and is

related to the formation of a damage zone at a free surface. The damage is represented by

a cohesive zone, and failure, i.e. the attainment of maximum load, is associated with the

attainment of an elastically calculated effective tensile failure stress. With regard to failure

arising as a result of the formation of a damage zone at the surface of a blunt stress

concentration, the paper predicts the extent to which the effective tensile failure stress

increases with increasing severity of the stress concentration, i.e. as the root radius

decreases.
1. Introduction
It is a well-known experimental fact that the effective
tensile failure stress of an uncracked brittle structure
depends on its dimensions. This is best, and very
simple, illustrated by considering the case of an un-
cracked bend beam specimen for which the maximum
stress occurs at the tensile surface. Assuming elastic
behaviour, if the beam depth is d and the beam thick-
ness is B, the bending moment is equal to Bd2r

4
/6,

where r
4

is the tensile stress at the surface. Experi-
ments [1, 2], for example with unreinforced concrete
beams, have shown that the maximum moment
M

.
that a beam is able to sustain is equal to Bd2r

4
/6

with r
4
"r

.
and where r

.
(the effective tensile failure

stress) increases as the beam depth d decreases.
As recently emphasized by Li and Bazant [3], the

underlying cause of this geometry dependence for
brittle and quasibrittle materials such as concrete, sea
ice, rocks, tough ceramics and composites is asso-
ciated with the experimental observation that they
exhibit damage zones which are able to grow in
a stable manner prior to the attainment of maximum
load. That being the case, the dominant source of the
geometry dependence is not randomness of strength,
but rather it is deterministic and is related to
the manner in which such a zone develops. From
this basis, and in the context of the bend specimen
geometry, the present author [4] has shown that the
effective tensile failure stress is critically dependent on
the applied loading-induced stress gradient beneath
the surface of a structure. The effective tensile failure
stress increases with increasing steepness of this gradi-
ent, and we therefore have a ready explanation as to
why the effective tensile failure stress for an uncracked
beam increases as the beam depth decreases.
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The present paper builds on these earlier consider-
ations by considering the formation of a damage zone
at the surface of a blunt stress concentration, instead
of a planar surface, and the results of a theoretical
analysis demonstrate the extent to which the effective
tensile failure stress increases with increasing severity
of the stress concentration, i.e. as the root radius
decreases.

2. Outline of the cohesive zone
description of a damage zone

The simplest way of representing a damage zone is to
use the so-called cohesive zone description, whereby
a single, infinitesimally thin two-dimensional cohesive
zone starts to form at the surface of a structure when
the tensile stress at the surface attains some critical
value p

#
(we are assuming plane-strain deformation

conditions). As the applied load (stress) increases, the
zone spreads away from the surface into the interior of
the structure. The zone can be characterized by a ma-
terial-specific relation between the tensile stress, p, and
the relative displacement, v, between the zone faces,
with p being a maximum, p

#
, at the leading edge of the

cohesive zone. The zone is said to be fully developed
when the stress falls to zero at the trailing edge of the
zone, i.e. at the surface, a situation that is assumed to
be attained when the displacement v attains a critical
value, v

#
. With a general p—v cohesive zone behaviour,

the maximum load (stress), and thereby failure, is
attained prior to the cohesive zone’s full development.
However, so as to simplify the considerations, it will,
in this paper, be assumed that the stress, p, within the
cohesive zone remains constant at the value p

#
until

the displacement, v, attains the critical value, v
#
, when
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Figure 1 The model of an elliptically cylindrical hole in an infinite
solid subjected to an applied tensile stress r; there are cohesive
zones at the roots of the hole.

the stress, p, is assumed to fall abruptly from p
#
to zero.

This is the classic Dugdale—Bilby—Cottrell—Swinden
(DBCS) [5, 6] representation that is frequently used to
model stress relaxation phenomena. With this specific
cohesive zone behaviour, the attainment of maximum
load (stress), and thereby failure, is associated with the
full development of the cohesive zone.

3. Cohesive zone formation at
a cylindrical hole: use of mode III
simulation model results

Consider the situation where there is a two-dimen-
sional elliptically cylindrical hole in an infinite solid
(Fig. 1), which is subjected to the applied tensile stress,
r. The semimajor axis is a and the semiminor axis is b,
whereupon the radius of curvature at the ends of the
major axis is q"b2/a. Cohesive zones of the type
described in the preceding section emanate from the
roots of the hole as shown in Fig. 1.

The antiplane strain (mode III) analogue of the
plane-strain (mode I) model in Fig. 1 can be analysed
to give closed-form solutions, thereby enabling one to
have a clear picture of the way in which the various
geometrical and material parameters interact. Thus
the mode III results [7] will be used for the mode I
situation with the shear modulus being replaced by
E
0
/2, where E

0
is the reduced Young’s modulus of the

material, i.e. E
0
"E/(1!m2), E being Young’s

modulus and m being Poisson’s ratio. The results give
the maximum stress required for failure, i.e. for the
relative displacement at a flaw root to attain a critical
value, v

#
, as

r
p
#

"

b/a

1#b/a
#

2

p (1#b/a)
sec~1CexpA
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v
#
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#
a BD (1)

If the effective failure stress, i.e. the elastically
calculated stress, is r

%&&
, i.e.

r
%&&
r

"1#
a

b
(2)
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it follows from Equations 1 and 2 that
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Furthermore, the mode III analytical results give the
cohesive zone size associated with the attainment of
maximum stress as

s

a
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q
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with

v"expA
pE

0
v
#

8p
#
a B (5)

Now with the DBCS representation of a cohesive
zone, the fracture toughness, K

I#
, associated with

crack extension under linear elastic fracture mechan-
ics conditions, i.e. where the cohesive zone is small
compared with all the geometrical parameters asso-
ciated with a configuration, is given by the relation

K
I#
"(E

0
p
#
v
#
)1@2 (6)

whereupon Equations 3 and 5 can be written as
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respectively. When pK2
I#
/8p2

#
a,h is less than 0.7,
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to within an accuracy of about 10%. Moreover, again
for small h, Equation 4 simplifies to

s

a
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Thus, provided that pK2
I#
/8p2

#
a is small, i.e. less than

0.7 (see comment preceding Equation 9), Equations
7 and 9 give

r
%&&
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#
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K
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p
#
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(12)

Furthermore, provided that q is not small compared
with a, Equations 10 and 11 show that both s/a and
s/q are small. Vice versa, if both s/a and s/q are small,
h is small and Equation 12 is appropriate.

Interestingly, and most importantly, the preceding
analysis shows that it is the hole root radius q which is
the hole geometry length parameter that enters into



Figure 2 The planar surface model analyzed in Section 4.

the simplified expression in Equation 12 for the effec-
tive failure stress, r

%&&
. With the mode III semi-ellipti-

cal hole model used in this section, the root radius
q characterizes the elastic stress gradient immediately
ahead of the hole tip, i.e. if r(x) is the appropriate
stress at a distance x from the hole root surface and
r
L

is the stress at the surface, then [8]

r (x)"r
LA1!

x

qB (13)

for small x. That being the case, it is reasonable to
suggest that, with a general hole not necessarily semi-
elliptical and not necessarily with mode III loading, if
the elastic stress immediately ahead of the hole is of
the form given by Equation 13 but with q replaced by
a more general parameter h, then there should be
a simple effective failure stress relation similar to
Equation 12, but with q replaced by h. The analyses
in the next two sections provide support for this
assertion.

4. The planar surface simulation
procedure: mode III analysis

Consider the mode I situation where there is a cohe-
sive zone emanating from a planar surface of a semi-
infinite solid (Fig. 2). It is assumed that the tensile
stress along the plane X

2
"0 in the absence of the

cohesive zone is

r (x)"r
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x

hB"K
5
rA1!

x

hB (14)

where x is measured from X
1
"0 along the X

I
axis.

This stress simulates the tensile stress ahead of the
root of a hole where r is the applied stress, K

5
is the

elastic stress concentration factor, r
L

is the stress at
the flaw surface and h is a length parameter.

In line with the earlier considerations in this paper,
and with p

#
being the (constant) tensile stress within

the cohesive zone, the maximum-stress situation is
assumed to be attained when the relative displacement
within the cohesive zone attains a critical value, v
#
. For

the corresponding mode III situation, isolated-crack—
infinite-body solutions can be used, by making a cut
along the plane X

1
"0. Applying these solutions to

the mode I loading state, the condition for stress
finiteness (equal to p

#
) at the leading edge of the

process zone is

p
2
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while the relative displacement condition at x"0 is
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Now r
L
"r

%&&
, the effective failure stress appropriate

for use in a traditional elastic stress analysis, where-
upon elimination of s between Equations 15 and 16
gives
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with w"K
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/p

#
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)1@2. The right-hand side of Equation 17

can be expanded in terms of increasing powers of
w when, to the second term, it becomes
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Now, as regards the geometrical parameter h that
characterizes the stress distribution ahead of the sur-
face of an actual hole, with the mode III model of
a semi-elliptical hole in a uniformly stressed infinite
solid, h is equal to q, the hole root radius (see Equa-
tion 13). In this case, Equation 18 is identical with
Equation 12. This equivalence demonstrates very
clearly the potential for using the planar surface simu-
lation procedure coupled with a linear ‘‘applied’’ stress
distribution, in lieu of a detailed cohesive zone analy-
sis for an actual hole, expecting this approach to be
reasonably accurate provided that the cohesive zone
size is small compared with both the hole size and
the root radius. In the next section we derive an
expression for the effective failure stress on the basis of
actual mode I results from a planar surface analysis.

5. The planar surface simulation
procedure: mode I analysis

In this section, the objective is to obtain a relation of
the form of Equation 18, using actual mode I results
rather than making use of mode III results, as was the
case in the preceding section. The quoted results of
Tada et al. [9] show that the condition for stress
finiteness at the leading edge of the process zone (see
Fig. 2) is

1.12(r
L
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#
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L
s
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while the relative displacement condition at x"0 is
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these relations being analogous to Equations 15 and
16, respectively, for the mode III analysis. With
r
L
"r

%&&
, the effective failure stress, elimination

of s between Equations 19 and 20 gives, to the first
term in powers of K

I#
/p
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h1@2 and again with K
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a relation which is analogous to Equation 18 obtained
from a mode III analysis. We immediately see that
there is a close correspondence between the two sets of
results.

As an example of an application of the mode I
Equation 21, consider the elliptically cylindrical hole
model shown in Fig. 1. In this case a detailed analysis
(see the Appendix) shows that the parameter h describ-
ing the stress distribution (see Equation 14) ahead of
the hole (mode I loading) is given by the expression
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whereupon h+q/2 for a wide range of hole profiles,
showing that it is the hole root radius that is the
geometry parameter that governs the magnitude of
the effective failure stress (see Equation 21). Equa-
tion 22 checks with the well-known solution [10] for
a circular hole (q"a) when h"3a/7. Equations 21
and 22 allow the effective failure stress to be given by
the relation

r
%&&
p
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where the second term on the right-hand side of this
relation is accurate to within 2% for a/q lying within
[11] the range 1P5. Now Vitek [11] has undertaken
a numerical analysis of the mode I model in Fig. 1,
based on the representation of the displacement
discontinuity within the cohesive zones in terms of
discrete dislocations, and the reduction of the problem
to the solution of a system of linear equations. When
K

I#
/p

#
a1@2 is small (this condition is implicit in the

considerations leading to Equation 18), Vitek’s curve-
fitted results can be reframed so as to give the follow-
ing expression for the effective failure stress:
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simplifying to
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where the second term on the right-hand side of this
relation is accurate to within 3% for a/q lying within
32
the range 1P5. There is good agreement between
Equations 23 and 25. Such an agreement for mode I
loading coupled with the similar agreement for mode III
loading provides confidence in using the elastic stress
gradient h ahead of a hole as input towards estimating
the effective failure stress, the appropriate relation
(mode I) giving r

%&&
being Equation 21.

6. Concluding comments
The paper has been concerned with the geometry
dependence of the effective failure stress of an un-
cracked brittle structure, proceeding from the basis
that it is related to the formation of a damage zone at
a free surface. The damage is represented by a cohesive
zone, and the maximum load (i.e. failure) is associated
with the attainment of an elastically calculated effec-
tive tensile failure stress. The paper has been specifi-
cally concerned with the effective stress associated
with the formation of a damage zone at the surface of
a blunt stress concentration and it has been shown
that the key parameter that affects the magnitude of
this stress is the stress gradient ahead of the stress
concentration, and this is related to the root radius of
the concentration.

Appendix
Fig. 1 shows the two-dimensional model of an ellipti-
cally cylindrical flaw in an infinite solid that is sub-
jected to a tensile stress, r, normal to the major axis of
the flaw; the semiminor and semimajor axes are of
lengths b and a, respectively. The objective of the
analysis in this Appendix is to determine the stress
p
22

along the X
1

axis ahead of the right-hand flaw
root to the first two terms in the expansion of this
stress, i.e. the parameter h in the expansion
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where K
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"1#2(a/q)1@2, with x being measured

along the X
1

axis away from the flaw root.
The standard solution giving the elastic stress distri-

bution in the solid can be described by the expressions
[12]
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, and with the usual complex vari-

able terminology. Based on the transformation
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0
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0
, the functions

/ and v in Equations A2 and A3 are given by the
expressions
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where A, B, C, D and w
*

are given by the relations
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It follows from Equations A2—A7 that, along the
X

1
axis ahead of the flaw root, the expression for p

22
is
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with w being real. With w"w
0
#*w and X

1
"a#x,

where *w and x are both presumed to be small, it
follows that, to the first term in x, we have

p
22
"rA1#

2a

b B (A9)

this being, of course, the standard elastic stress con-
centration result. As regards the second term, it fol-
lows from Equation A8 that
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which simplifies to
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It then follows by reference to Equation A1, and with
K

5
"1#2(a/b),1#2(a/q)1@2, that the parameter

h is given by the relation
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or, with a"b coshw
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Expressed in terms of the flaw root radius, this rela-
tion becomes
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